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Abstract 

In heterogeneous and dynamic environments, efficient resource usage can require mappings 

of tasks to resources whose performance varies both in space and in time. While adaptive domain 

decomposition techniques have been used to address heterogeneous resource capabilities, 

temporal variations in those capabilities have seldom been considered. We propose a 

conservative scheduling policy that uses information about expected future variance in resource 

capabilities to produce more efficient data mapping decisions. Evaluation of several new one-

step-ahead and low-overhead time series prediction strategies shows that a dynamic tendency 

prediction model with different ascending and descending behavior performs best. We extend a 

one-step-ahead predictor to predict average resource capabilities for some future time interval 

and variation of resource capabilities over some future time interval. We present a family of 

stochastic scheduling algorithms that exploit such predictions when making data-mapping 

decisions. Experimental results with a CPU-bound astrophysics application and a GridFTP 

implementation demonstrate that conservative scheduling can produce execution times that are 

both significantly faster and less variable than other techniques. 

1 Introduction 

In multiuser time-shared systems, performance may vary in both time and space because of 

competing applications. Effective use of such heterogeneous and dynamic systems requires new 

approaches to performance prediction and data mapping. We present here a conservative 

scheduling technique that uses predicted mean and variance resource capacity information to 

make data-mapping decisions.  

We proceed as follows. First, we review related work (Section 2), describe the problem 

(Section 3), and evaluate several new one-step-ahead and low-overhead time series prediction 

strategies that track recent trends by giving more weight to recent data (Section 4). Next we 
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extend the one-step-ahead prediction strategy to obtain average resource capability for some 

future time interval and variation of resource capability over some future time interval (Section 

5). We then (Section 6) introduce our conservative scheduling method and describe experimental 

results when our strategies are applied to a CPU-bound application and a parallel data transfer 

implementation (Section 7). Section 8 presents our conclusions about the effectiveness of our 

approach for multiple runs in heterogeneous environments.  

2 Related Work 

Many researchers [7,10,18,22-24,32] have explored the use of time-balancing or load-

balancing models to reduce application execution time in heterogeneous environments. However, 

their work has typically assumed that resource performance is constant or slowly changing, and 

thus such work does not take later variance into account. For example, Dail [10] and Liu et al. 

[24] use the 10-second-ahead predicted CPU information provided by the Network Weather 

Service (NWS) [33,34] to guide scheduling decisions. While this one-step-ahead prediction at a 

time point is often a good estimate for the next 10 seconds, it is less effective in predicting the 

available CPU during a longer execution.  

Dinda et al. use multiple-step-ahead predictions of host load [16] and their associated error 

covariance information to predict the running times of tasks as confidence intervals [12]. These 

confidence intervals, a representation of prediction error variances, can then be used for various 

scheduling goals [13]. In contrast, we predict the variance of resource load itself and focus on 

scheduling data parallel tasks to minimize overall runtime.   

Yang and Casanova [39,40] present a multiround scheduling algorithm for divisible 

workloads. They use system performance information collected at scheduling time to decide a 

workload allocation scheme. If the system status changes dramatically during execution of the 
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application, the scheduler is switched to a greedy algorithm that assigns more work to idle 

computers. However, this strategy is limited to applications whose subtasks are independent of 

each other. The loosely synchronous application we concerned with, on the other hand, involve 

communications among subtasks.   

Dome [5] and Mars [20] support dynamic workload balancing through migration and make 

the application adaptive to the dynamic environment at runtime. But the implementation of such 

adaptive strategies can be complex and is not feasible for all applications. 

Schopf and Berman [28] defined a stochastic scheduling policy based on time balancing for 

data-parallel applications. The idea is to allocate less work to machines with higher load 

variance. Their algorithm uses the mean and variation of the history information but assumes that 

the associated stochastic data can be described by a normal distribution, an assumption they 

admit is not always valid [15,26]. 

In our approach, we define a time-balancing scheduling strategy based on the prediction of 

the next interval of time and a prediction of the variance. Our aim is to achieve faster and less 

variable application execution time.  

3 Problem Statement 

Efficient execution in a distributed system can require mechanisms for the discovery of 

available resources, the selection of a job-appropriate subset of those resources, and the mapping 

of data or tasks onto selected resources. Here, we assume that the target set of resources is fixed, 

and we focus on the data-mapping problem for data-parallel computation and transfer jobs. We 

do not assume that the resources have identical or even fixed capabilities or identical underlying 

loads. Our goal is to achieve data assignments that balance load between resources so that each 

resource finishes executing at roughly the same time, thereby minimizing execution time.  
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This form of load balancing, also known as time balancing, is generally accomplished by 

solving a set of equations, such as the following, to determine the data assignments: 

           ji,      )(D E)(D E jjii ∀=                                                                                                  (1) 

           ∑ = Totali DD .  

Di is the amount of data assigned to resource i; DTotal is the total amount of data for the job; and 

Ei(Di) is the execution time of task on resource i and is generally parameterized by the amount of 

data on Di. It can be calculated by using a performance model of the task such as the following 

(note that the performance of an application can be affected by the future capacity of both the 

network bandwidth behavior and the CPU availability): 

              Ei(Di) = Comm(Di)*(futureNWCapacity) + Comp(Di) *(futureCPUCapacity). 

To proceed, we need mechanisms for (a) obtaining some measure of future capability and (b) 

translating this measure into an effective resource capability. Two measures of future resource 

capability are important: the expected value and the expected variance in that value. One 

approach to obtaining these two measures would be to negotiate a service level agreement (SLA) 

with the resource owner to contract to provide the specified capability [9]. Or, we could use 

historical data to predict future behavior [12,27,29,31,33,34,36]. We focus in this article on the 

latter approach but emphasize that our results for topic (b) are also applicable in the SLA case.  

4 One-Step-Ahead Prediction Strategies Study 

We present two families of strategies: (1) homeostatic prediction and (2) tendency-based 

prediction. Each strategy predicts the one-step-ahead value based on a fixed number of 

immediately preceding history data measured at a constant-width time interval. We use the 

following notation: VT  is the measured value at the Tth measurement; PT+1 is the predicted value 

for measurement value VT+1; and N is the number of history data points used in the prediction. 
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4.1 Homeostatic Prediction Strategies 

“Homeostatic prediction strategies” work on the assumption that if the current value is 

greater (less) than the mean of history values, then the next value is likely to decrease (increase). 

More formally, this kind of strategy can be expressed as follows: 

         if (VT > MeanT) then 
              PT+1 = VT – DecrementValue; 
              [Optional DecrementValue adaptation process]     
         else if (VT < MeanT) then 
              PT+1 = VT + IncrementValue; 
              [Optional IncrementValue adaptation process] 
         else 
              PT+1 = VT; 
 
where MeanT  is the mean of the N history data points, calculated by the following formula: 

           MeanT = (Σi=1..N Vi)/N.                                                                                                                          (2)      

At every prediction step, the increment or decrement value can be an independent value or a 

relative value proportional to the current measurement. The increment or decrement value can be 

“static,” such that it is fixed for all prediction steps, or “dynamic,” such that it is adapted to the 

time series at each step. Different combinations result in four homeostatic prediction strategies: 

independent static, independent dynamic, relative static, and relative dynamic. We present a 

detailed description of these strategies next. Our selection for the parameter values for each 

strategy is discussed in Section 4.3.1. 

4.1.1 Independent Static Homeostatic Prediction Strategy   

The independent static homeostatic strategy generates a prediction by changing the current 

value by a fixed amount, without any adaptation process. The decrement (increment) constant 

may change depending on the training set. Values between 0.05 and 1 are reasonable.  

4.1.2 Independent Dynamic Homeostatic Prediction Strategy 

The independent dynamic homeostatic strategy dynamically adjusts the amount of the 

increment or decrement value by means of an adaptation process: 
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             Measure VT+1;                         //  DecrementValue adaptation process: 
               RealDecValueT = VT - VT+1; 

               DecConstantT+1 = DecConstantT + (RealDecValueT –  DecConstantT) * AdaptDegree; 
               Measure VT+1;                        //  IncrementValue adaptation process: 
               RealIncValueT = VT+1 - VT; 

               IncConstantT+1 =IncConstantT + (RealIncValueT - IncConstantT) * AdaptDegree;    
 

At each time step, after we measure the real data (VT+1), we calculate the difference between the 

current measured value and the last measured value, thus determining the real decrement 

(increment) we should have used in the last prediction in order to get the actual value. We adapt 

the value of the decrement (increment) value accordingly and use the adapted IncConstant (or 

DecConstant) to predict the next data point. The parameter AdaptDegree can range from 0 to 1 

and expresses the adaptation degree of the variation. If AdaptDegree is equal to 0, the 

DecConstantT+1 (IncConstantT+1) is not adapted at all, and we have nonadaptation (or a static 

approach). If AdaptDegree is equal to 1, the DecConstantT+1 (IncConstantT+1) is equal to 

RealDecValueT  (RealIncValueT), or full adaptation. The goal is to obtain a value of 

AdaptDegree that results in minimal average error rate; values between 0.05 and 1 are 

reasonable.  

4.1.3 Relative Static Homeostatic Prediction Strategy 

The relative static homeostatic strategy assumes that a larger load value has more potential to 

change than does a smaller load value. Thus, this strategy modifies the independent static 

homeostatic prediction strategy so that the increment or decrement applied to a prediction is 

proportional to the current value instead of a constant value. The decrement (increment) value 

can be expressed by DecrementValue= VT* DecrementFactor (IncrementValue= VT* 

IncrementFactor). Increment or decrement values between 0.05 and 1 are reasonable.  

4.1.4 Relative Dynamic Homeostatic Prediction Strategy 

The relative dynamic homeostatic strategy alters the prediction value by a relative amount, as 

does the relative static homeostatic strategy, but allows the value of IncrementFactor and 
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DecrementFactor to be adapted dynamically, using the same method as in the independent 

dynamic homeostatic prediction strategy.  

 

4.2 Tendency-based Prediction Strategies 

Our second family of prediction strategies predicts the next value according to the tendency 

of the time series change. This approach assumes that if the current value increases, the next 

value will also increase and that if the current value decreases, the next value will also decrease. 

Formally, tendency-based prediction strategies can be expressed as follows: 

         if ((VT - VT-1)<0)                         //Determine Tendency 
                 Tendency=”Decrease”;   

         else if ((VT-1 - VT )<0)  
                Tendency=”Increase”;    
         if (Tendency=”Decrease”) then 
                 PT+1 = VT – DecrementValue; 
                 DecrementValue adaptation process 
         else if (Tendency=”Increase”) then 
                 PT+1 = VT + IncrementValue; 
                 IncrementValue adaptation process 
 
The variation (DecrementValue and IncrementValue) can be an independent or relative value 

proportional to the current value. Since the static prediction strategies always give worse results 

than does a simple last-value prediction strategy in the initial experiments, we exclude the static 

case from this discussion.  

Tendency-based strategies have an additional possible source of error. Since it is impossible 

to predict when a time series is going to “change direction,” a large error can occur at the turning 

point. To minimize this kind of error, we use the mean of the history data as the threshold value. 

In the increase phase, if the current data is smaller than the threshold value, the variation will be 

adapted normally; if the time series increases to a value that is bigger than the threshold value, 

the next step may be a turning point. We calculate the percentage of the history data that is 

greater than the current data and use this value as the possibility of current data not being a 

turning point. The larger the current value is, the more possible that it is the turning point, and 
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the less the percentage of the history data bigger than it is. So the IncrementValue adaptation 

process can be expressed in the following way.  

     MeanT = (Σi=1..N Vi)/N;                                 
    RealIncValueT = VT+1 - VT; 

        NormalInc = IncValueT+(RealIncValueT- IncValueT)* AdaptDegree; 
    if (VT+1 < MeanT)   // normal adaptation  
          IncrementValueT+1 = NormalInc;   
    else             

              PastGreaterT=(the number of past data points greater than VT) /N; 
         TurningPointInc = IncValueT*PastGreaterT; 

              IncrementValueT+1=Min(abs(NormalInc),  abs(TurningPointInc)); 
 

NormalInc is the value of the IncrementValueT+1 in the case of normal adaptation. When the 

current value is higher than MeanT , it may be a turning point, and the value of PastGreaterT  (the 

percentage of the past time series values greater than the current value) will be small (<0.5). 

Hence, the possibility that the current value is not the turning point is small, so we adjust the 

increment value accordingly. If we predict the value to go in the wrong direction, the error is still 

small. (The DecrementValue can be adapted in the same way by using the percentage of the 

history data smaller than current value when the current value decreases to a value smaller than 

the threshold value.) 

4.2.1 Independent Dynamic Tendency Prediction Strategy 

The independent dynamic tendency strategy predicts the next step value by adding or 

subtracting an independent increment or decrement value from the current value according to the 

tendency of the value change. For this strategy, we determined the increment and decrement 

values just as we did in Sections 4.1.1 and 4.1.2. 

4.2.2 Relative Dynamic Tendency Prediction Strategy 

The relative dynamic tendency strategy is similar to the independent dynamic tendency 

prediction strategy except that the increment value or decrement value is in proportion with the 

current value. The increment and decrement values are determined in the same way as for the 

relative static and dynamic homeostatic approaches, discussed in Sections 4.1.3 and 4.1.4. 
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4.2.3 Dynamic Tendency Prediction Strategy  

In initial experiments using CPU load time series, the independent tendency prediction 

strategy resulted in better predictions during an increase phase and the relative tendency 

prediction strategy generally resulted in better predictions during a decrease phase. One possible 

explanation is that while a CPU time series is increasing, the independent tendency strategy 

better tracks the behavior because of very small increases independent of the actual value of the 

prediction, but that during the decrease phase the relative prediction strategy applies a value is 

proportional to the current value more in keeping with the trend of the load behavior. Further 

experiments (Section 4.3) support this tentative explanation.. 

Because of this initial result, we define a mixed tendency-based prediction strategy that 

predicts the next value for an increase phase using the independent tendency prediction strategy 

and for a decrease phase uses the relative tendency prediction strategy. 

         DecrementValue=VT*DecrementFactor                                                                              
         IncrementValue=IncrementConstant 
 
For completeness, we examined the use of the independent constant in the decrement phase and a 

relative value in the increment phase, but worse predictions resulted in all cases.  

4.3 Prediction Strategy Evaluation 

We ran two sets of experiments using our predictors. In the first set, we ran all of our 

predictors on a small set of time series over which we had complete control, and we evaluated 

the effect of different collection rates on our own predictors, on a simple last-value predictor, and 

on the Network Weather Service (NWS) [33,34]. In the second set, we ran a larger set of 38 load 

traces and evaluated only our best predictor and NWS.  

The last-value predictor uses the current measured value as the predicted value of the next 

measurement. Harchol-Balter and Downey [21] show that this is a useful prediction strategy for 
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CPU resources. It has low computation and storage overhead and is the default predictor in 

several current systems because of its simplicity. 

NWS dynamically selects the best predictor from a set that includes mean-based prediction 

strategies, median-based prediction strategies, and AR model-based prediction strategies. Its 

forecasts are equivalent to, or slightly better than, the best forecaster in the set. Hence, if our 

prediction strategy performs better than the NWS predictor, it can perform better than all the 

prediction techniques in the set. 

We did no model fitting for any of the experiments, as is commonly needed in linear 

regression techniques. Instead, the parameters were defined by using training data off-line before 

the experiments, as described in Section 4.3.1. Thus, we minimized the run-time cost (on 

average, this is only a few milliseconds per prediction). 

4.3.1 Input Parameters 

To determine the input parameters, we ran 25 experiments each involving a one-hour CPU 

load time series, and we evaluated increment and decrement values at intervals of 0.05 between 0 

and 1 using the following error formula.  

Average Error Rate=
%100*

)(
..1

N

VVPabs
Ni

iii∑ =
−

                                                                 (3) 

The value that results in minimal average error rate is considered best. For our experiments, we 

found the best results with IncrementConstant= DecrementConstant = 0.1, IncrementFactor = 

DecrementFactor = 0.05, and AdaptDegree = 0.5, and used them for all of our predictions.  

We also studied the sensitivity of the mixed variation prediction strategy to a selection of 

AdaptDegree parameter values; the details can be found at [36]. We concluded that the value of 

the parameter does not significantly affect the prediction capability of our strategy as long as 

extremes are avoided, and we therefore selected an intermediate value of 0.5 for our studies. 
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4.3.2 Prediction Strategy Evaluation 

We ran a set of experiments on four machines to evaluate the prediction strategies presented 

in Section 4.1 and 4.2. For each machine, we collected one set of data (spanning roughly 28 

hours) and then examined it as three different time series: 0.1 Hz (measure the data every 10 

seconds) with roughly 10,000 data points; 0.05 Hz (measure the data every 20 seconds), and 

0.025Hz (measure the data every 40 seconds). Detailed discussion of the properties of the time 

series can be found in [36]. 

We evaluated our time series prediction strategies on twelve CPU load time series. The error 

rates and the standard deviations of the prediction strategies when tested against these time series 

are shown in Table 1, with the best predictors shown in boldface. 

All the prediction strategies gave less accurate prediction on average for the traces with lower 

frequency. We attribute this result to (a) data points being more widely spaced in time, so the last 

data points are not as “current” as the traces where there is more data, and (b) the prediction 

point being farther in the future. We also see that the independent static homeostatic strategy, 

without any dynamic adjustment, always gives the worst results. 

Tendency prediction strategies outperform other prediction strategies almost in all cases. In 

particular, the strategy using mixed variation gives better performance on average than the other 

two tendency prediction strategies for time series collected from different machines. It also 

achieves the smallest or near-smallest standard deviation of prediction error on 12 time series. 

Moreover, tendency prediction with the mixed variation method outperforms the NWS predictor 

on all time series, with an average prediction error 20.68% less than that of the NWS predictor. 
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Table 1: The error of different prediction strategies, with the best in each case shown in boldface. 
(1) Mean and standard deviation of the prediction errors on time series collected from abyss.cs.uchicago.edu 

0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic  496.10% 4.2855 492.26% 4.3583 488.90% 4.4384 
Independent Dynamic Homeostatic 12.50% 0.2369 25.51% 0.4153 56.70% 0.9756 
Relative Static Homeostatic 13.40% 0.2115 24.85% 0.2771 44.37% 0.3960 
Relative Dynamic Homeostatic 13.53% 0.2585 28.67% 0.6984 59.57% 1.5305 
Independent Dynamic Tendency  11.42% 0.2097 21.45% 0.2742 40.44% 0.3949 
Relative Dynamic Tendency 11.54% 0.2338 20.40% 0.3203 36.15% 0.4799 
Mixed Tendency  11.13% 0.2094 19.48% 0.2741 34.23% 0.3941 
Last Value 14.40% 0.2068 25.84% 0.2742 45.62% 0.3984 
Network Weather Service 13.43% 0.2071 25.08% 0.2760 45.89% 0.4315 

(2) Mean and standard deviation of the prediction errors on time series collected from vatos.cs.uchicago.edu 
0.1 Hz 0.05 Hz 0.025 Hz  

Mean SD Mean SD Mean SD 
Independent Static Homeostatic  333.75% 4.0129 340.31% 4.0151 360.14% 3.9996 
Independent Dynamic Homeostatic 12.76% 0.2067 26.19% 0.3531 66.62% 1.0480 
Relative Static Homeostatic 16.46% 0.1929 30.16% 0.2561 57.52% 0.3906 
Relative Dynamic Homeostatic 15.48% 0.4531 33.73% 0.8334 102.55% 3.5787 
Independent Dynamic Tendency  12.38% 0.1926 22.78% 0.2583 43.16% 0.3699 
Relative Dynamic Tendency 11.77% 0.2722 20.25% 0.3735 36.85% 0.5569 
Mixed Tendency  10.78% 0.1947 18.74% 0.2607 34.31% 0.3628 
Last Value 16.50% 0.1879 29.40% 0.2510 57.14% 0.3874 
Network Weather Service 15.53% 0.1883 25.00% 0.2515 57.33% 0.3913 

(3) Mean and standard deviation of the prediction errors on time series collected from mystere.ucsd.edu 
0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic  158.09% 1.9350 167.71% 1.9891 185.06% 2.1680 
Independent Dynamic Homeostatic 21.24% 0.2655 38.47% 0.3867 70.20% 0.5989 
Relative Static Homeostatic 22.21% 0.1929 37.94% 0.2329 63.09% 0.3731 
Relative Dynamic Homeostatic 43.81% 1.5344 85.09% 2.2558 156.26% 4.3681 
Independent Dynamic Tendency  18.38% 0.2097 34.96% 0.2632 62.10% 0.4109 
Relative Dynamic Tendency 29.01% 0.8312 55.81% 1.2062 103.45% 2.0504 
Mixed Tendency  17.31% 0.2639 32.21%  0.3773 55.81% 0.5749 
Last Value 19.86% 0.2045 35.56% 0.2270 99.47% 0.3445 

Network Weather Service 18.88% 0.1945 34.92% 0.2288 96.96% 1.4816 

(4) Mean and standard deviation of the prediction errors on time series collected from pitcairn.mcs.anl.gov  
0.1 Hz 0.05 Hz 0.025 Hz  
Mean SD Mean SD Mean SD 

Independent Static Homeostatic     6.94%    0.0352     6.29% 0.0425     7.83% 0.0482 
Independent Dynamic Homeostatic    2.54% 0.0262    4.23% 0.0407    7.70% 0.0568 
Relative Static Homeostatic    2.73% 0.0248    4.45% 0.0364    7.17% 0.0462 
Relative Dynamic Homeostatic    2.68% 0.0242    4.48% 0.0371    7.29% 0.0515 
Independent Dynamic Tendency     2.43% 0.0239    4.11% 0.0365    7.07% 0.0476 
Relative Dynamic Tendency    2.29% 0.0237    3.91% 0.0409    7.39% 0.0575 
Mixed Tendency     2.29% 0.0237    3.91% 0.0409    7.38% 0.0574 
Last Value    2.69% 0.0242    4.46% 0.0364    7.24% 0.0473 
Network Weather Service    2.69% 0.0242    4.49% 0.0365    7.47% 0.0479 
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4.3.3 Varied Time-Series Comparison 

We also compared the techniques on a larger set of CPU load time series collected by Dinda 

[14]. These week-long, 1 Hz resolution time series represent 38 different machines, including 

production and research cluster machines, computer servers, and desktop workstations. The time 

series have complex, rough, and often multimodal distributions that are not well fitted by 

analytic distributions such as the normal or exponential distributions. All of the time series 

exhibit a high degree of self-similarity and epochal behavior. Detailed statistical properties of 

these CPU load time series can be found in [14].  

For our experiments, we selected 38 one-day time series collected on August 18, 1997. The 

experimental results show that the mixed tendency prediction strategy outperforms the NWS 

predictors on all 38 time series with different properties. Specifically, it achieves a prediction 

error that is 36% lower on average than that achieved by NWS.   

Our experiments also showed that this predictor does not perform well on network data. 

Instead, the NWS predictor is the best overall. One possible explanation is that for most of the 

network capability time series, the autocorrelation function value between two adjacent 

observations is small. Our new homeostatic and tendency-based prediction strategies, which give 

more weight to recent data, cannot track the trend in network capability time series well. NWS 

predictors, taking account of more statistic information, will give better a prediction for these 

time series. To predict future network capability information, we therefore used NWS predictors. 

5 Mean and Variance Prediction 

We now describe how the time series predictor can be extended to obtain three types of 

predicted resource performance information: the next-step predicted resource capability at a 

future time point (Section 5.1); the average interval resource capability for some future time 
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interval (Section 5.2); and the variation of resource capability over some future time interval 

(Section 5.3). 

5.1 One-Step-Ahead Resource Capability Prediction 

For the one-step-ahead prediction, we treat the measured preceding resource capability time 

series as the input to the predictor. The predictor’s output is the predicted resource capability at 

the next step. For CPU load prediction, we use our mixed tendency strategy as the one-step-

ahead predictor. For network capability prediction, we use the NWS predictor because it 

performs better.  

5.2 Interval Resource Capability Prediction 

The second type of prediction technique involves predicting the resource capability over the 

time interval during which an application will run. Since both the CPU load and network 

bandwidth time series exhibit a high degree of self-similarity [8,15], averaging values over 

successively larger time scales will not produce time series that are dramatically smoother. Thus, 

to calculate the predicted average resource capability an application will encounter during its 

execution, we need to first aggregate the original capability time series into an interval capability 

time series and then run predictors on this new interval time series to estimate its future value.  

Aggregation consists of converting the original capability time series into an interval 

capability time series by combining successive data over a nonoverlapping larger time scale. The 

aggregation degree M is the number of original data points used to calculate the average value 

over the time interval. This value, which can be approximate, is determined by the resolution of 

the original time series and the execution time of the applications. For example, the resolution of 

the original time series is 0.1 Hz, or measured every 10 seconds. If the estimated application 

execution time is about 100 seconds, the aggregation degree is 10. In other words, 10 data points 
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from the original time series are needed to calculate one aggregated value over 100 seconds. The 

process of aggregation is 

c1,  ...  ,cn-2M+1...cn-M-1,cn-M,cn-M+1,...cn-1,cn

ak

C=

A= ak-1,a1 ... k=  Mn
. 

C=c1,c2,…,cn is the original preceding capability time series measured at constant-width time 

interval and A=a1,a2, ak (k=  Mn ) is the interval capability time series, calculated by  

                         
M

Mj
jMikn

i

c
a ∑ =

++−−

= ..1
*)1(

       i=1..k   .                                                                              (4) 

Each value in the interval capability time series ai is the average resource capability over the 

time interval that is approximately equal to the application execution time. 

Next, we use the one-step-ahead predictor on the aggregated time series to predict the mean 

interval capability. 

Predictorc1, c2,...cn pak+1
Aggregation a1, a2,...ak

 
The output paK+1 is the predicted value of ak+1, which is approximately equal to the average 

resource capability the application will encounter during execution.  

5.3 Resource Capability Variance Prediction 

To predict the variation of resource capability, during the execution of an application, we 

calculate the standard deviation time series using the original resource capability time series C 

and the interval resource capability time series A (defined in Section 5.2): 

                         
M

Mj
ij*Mikn

i

ac
s ∑ =

++−− −
= ..1

2
)1( )(

       i=1..k  .                                                                 (5) 

Each value in standard deviation time series si is the average difference between the resource 

capability and the mean resource capability over the interval. 
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To predict the standard deviation of the resource capability, we use the one-step-ahead 

predictor on the standard deviation time series. The output psk+1 will be the predicted value of 

sk+1, or the predicted capability variation for the next time interval. 

Predictorc1, c2,...cn ps k+1Aggregation a1, a2,...ak
sd.

calculation s1,s2,...sk

 

6 Conservative Scheduling 

In this section, we show how we used the three types of predicted information from Section 5 

to guide the data mapping decisions in two different contexts: a CPU-bound astrophysics 

application (Cactus) and a GridFTP implementation in the Globus Toolkit. 

6.1 Data Parallel Application Scheduling 

We first applied our scheduling algorithms in the context of Cactus [3,4], a numerical 

modeling system used here to simulate a 3D scalar field produced by two orbiting astrophysical 

sources. This application decomposes the 3D scalar field over processors and places an overlap 

region on each processor. For each time step, each processor updates its local grid point and then 

synchronizes the boundary values. It is an iterative, loosely synchronous application. We used a 

one-dimensional decomposition to partition the workload. The full performance model for 

Cactus is described elsewhere [24], but in summary it is 

          Ei(Di) = start_up time+(Di*Compi (0) +  Commi (0)) * slowdown(effective CPU load).  

The startup time incurred when initiating computation on multiple processors in a workstation 

cluster was experimentally measured. Compi (0) and Commi (0), the computation time of per data 

point and communication time of Cactus in the absence of contention, was calculated by using 
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formulas described in [25]. The function slowdown(effective CPU load), which represents the 

contention effect on the execution time, was calculated by using the  formula described in [24]. 

Cactus performance is greatly influenced by the actual CPU performance achieved in the 

presence of contention from other competing applications. The communication time is less 

significant when running on a local area network, but for wide-area network experiments this 

factor would also be parameterized by a capacity measure. To capture the impact of contention, 

we defined the effective CPU load to be the interval load prediction (Section 5.2) plus the 

predicted variance (Section 5.3) in that quantity. We then used this quantity when allocating 

work to computers, with the effect that less work is allocated to highly varying machines. 

6.2 Parallel Data Transfer Scheduling  

The increasingly common practice of using multiple distributed storage systems as a 

distributed data store within which large datasets may be replicated has led to the problem of 

how to access replicated data efficiently. Multiple-source parallel transfers can improve data 

throughput time by fetching data from several replicas in parallel. However, we then face the 

problem of deciding how to distribute the data load among different storage resources. 

6.2.1 Network Capability Prediction 

We assume that the target set of sources is fixed, and we focus on the data allocation problem 

for multiple-link parallel data transfers. Our goal is to balance load between network links so that 

each link finishes transferring at roughly the same time. To this end, we use a time-balancing 

mechanism to made data assignment decisions, as accomplished by Formula 1 (Section 3). 

For parallel data transfer problems, Ei(Di) is the time needed to transfer Di data from ith data 

source to the destination. It can be calculated by using the formula Ei(Di)  = EffectiveLatencyi + 

Di/EffectiveBandwidthi. Thus, we first determine the value of effective network capability the 
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data transfer will experience during the entire transfer period. We then use this effective 

capability in the time-balancing formula to decide the data-mapping strategy.  

Because network capability can have a large variation – sometimes twice the mean – a tuning 

factor also is needed to limit the influence of the standard deviation on the mean. To allow for 

the use of variation information, we define the effective bandwidth of a link as Effective 

Bandwidth  = BandwidthMean  + TF * BandwidthSD, where BandwithMean is the predicted 

mean bandwidth of the network link the data will encounter during transfer, BandwidthSD is the 

predicted variation of bandwidth of the network link the data will encounter during transfer, and 

TF is a per link tuning factor that determines how conservative the data allocation policy should 

be. For links with higher variation, we prefer a more conservative scheduling policy. 

Note that we focus here on the bandwidth because, in our experiments, the latency is only a 

very small portion of the total data transfer time: < 0.1% for network links within one domain, 

and <1% for network links across domains.  

6.2.2 The Tuning Factor  

We calculate EffectiveBandwidth using a formula based on the base predicted mean 

bandwidth value, the tuning factor, and the standard deviation. Specifically, we vary the number 

of standard deviations added to the base bandwidth mean value using TF. The basic idea is to 

assign less data on network links with a larger variability in performance. Thus, we require a TF 

value that is inversely proportional to the variance of the network bandwidth. The TF value, in 

addition, must be able to limit the value added to the mean. We thus define TF with the 

algorithm in Figure 1.   

 
                       

 

                              Figure 1:The algorithm to compute our tuning factor. 

N=SD/Mean 
If (N>1) 
   TF=1/(2*N2); 
Else 
   TF=1/N-N/2; 
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This algorithm will give a TF that has the following characteristics: 

• TF = 0 to ½ when SD/Mean > 1. The higher variation the network link has in its 

capability, the higher the N value it will have. When the standard deviation is larger 

than the mean of the bandwidth (SD/Mean>1), the network is considered to be high 

variable and less reliable. We want a smaller TF and thus a smaller effective 

bandwidth value.  

• TF = ½ to 8 when SD/Mean <= 1. When the standard deviation is smaller than the 

mean of the bandwidth (N <= 1), the network link is considered to be low variable and 

more reliable. We want a larger TF value and thus a larger effective bandwidth value.   

• In both cases, the values of TF and TF*SD are inversely proportional to N. 

To illustrate our idea, we calculate the value of TF and TF*SD by our algorithm, while fixing 

the mean bandwidth value equal to 5 Mb/s and changing the standard deviation of bandwidth 

from 1 to 15. We find that the values of both TF and TF*SD are inversely proportional to the 

bandwidth standard deviation (and N), for a fixed mean. For network links with higher variation, 

we will have a smaller TF and smaller effective bandwidth value and thus a more conservative 

data-scheduling decision. The value added to the mean is less than the mean of the bandwidth. 

The validity of the tuning factor and the tuned conservative scheduling method is evaluated in 

the next section. However, we acknowledge that other approaches for calculating the TF value 

may further improve the efficiency of the tuned conservative scheduling method. 

7 Conservative Scheduling Experiments 

To validate our scheduling strategy, we applied it in two contexts: a CPU-bound astrophysics 

application and a GridFTP implementation. We conducted experiments on the GrADs [6] test 

bed, which comprises workstation clusters at the University of Chicago, University of Illinois at 
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Urbana-Champaign, University of Tennessee, University of California at San Diego, University 

of Houston, and University of South California’s Information Sciences Institute. 

7.1 Data-Parallel Application Experiments 

7.1.1 Experimental Methodology 

To show the efficiency of our conservative scheduling policy, we compared the execution 

times of the Cactus application with five scheduling policies:  

(1) One-Step Scheduling (OSS): Use the one-step-ahead prediction of the CPU load, as 

described in Section 5.1, for the effective CPU load. 

(2) Predicted Mean Interval Scheduling (PMIS): Use the interval load prediction, described 

in Section 5.2, for the effective CPU load. 

(3) Conservative Scheduling (CS): Use the conservative load prediction. 

(4) History Mean Scheduling (HMS): Use the mean of the history CPU load for the 5 

minutes preceding the application start time for the value for effective CPU load. This 

approximates the estimates used in several common scheduling approaches [30,32].  

(5) History Conservative Scheduling (HCS): Use the conservative estimate CPU load defined 

by adding the mean and variance of the history CPU load collected for 5 minutes 

preceding the application run as the effective CPU load. This approximates the prediction 

and algorithms used in [28]. 

At UIUC, we used a cluster of four 450 MHz Linux machines. At UCSD, we used a cluster 

of six Linux machines: four machines with a 1733 MHz CPU, one with a 700 MHz CPU, and 

one with a 705 MHz CPU. At Argonne, we used a cluster of thirty-two 500 MHz CPU Linux 

machines. All machines were dedicated during experiments.  

To evaluate the scheduling policies under identical workloads, we used a load trace playback 

tool [17] to generate a background workload from a trace of the CPU load that results in realistic 
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and repeatable CPU contention behavior. We chose 64 load time series from [1] with different 

mean and variation. We did experiments with 10 different configurations. Complete results and 

discussion can be found at [37]. Representative results are analyzed in the following section. 

7.1.2 Experimental Results 

 
To compare the various policies, we used three metrics: an absolute comparison of run times, 

a relative measure of achievement, and a statistical analysis to show the significance of the 

improvement of our strategy. The first metric gives a rough valuation on the performance of each 

scheduling policy over a given interval of time. Over the entire run, the Conservative Scheduling 

policy exhibited 2%–7% less overall execution time than did the History Mean and History 

Conservative Scheduling policies, by using better information prediction, and 1.2%–8% less 

overall execution time than did the One Step and Predicted Mean Interval Scheduling policies. 

We also see that taking variation information into account in the scheduling policy results in 

more predictable application behavior. The History Conservative Scheduling policy exhibited 

2%–32% less standard deviation of execution time than did the History Mean. The Conservative 

Scheduling policy exhibited 1.5%–77% less standard deviation in execution time than did the 

One-Step Scheduling policy and 7%–41% less standard deviation of execution time than did the 

Predicted Mean Interval Scheduling policy. 

The second metric we used, Compare, is a relative metric that evaluates how often each run 

achieves a minimal execution time. We consider a scheduling policy to be “better” than others if 

it exhibits a lower execution time than another policy on a given run. Five possibilities exist: best 

(best execution time among the five policies), good (better than three policies but worse than 

one), average (better than two policies and worse than two), poor (better than one policy but 

worse than three), and worst (worst execution time of all five policies). The results indicate that 
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Conservative Scheduling using predicted mean and variation information is more likely to have a 

“best” or “good” execution time than are the other approaches on both clusters. Clearly, taking 

account of the average and variation CPU information during the period of application can 

significantly improve the application’s performance.  

The third metric involves using a T-test to show the significance of the improvement of our 

strategy over other strategies. A T-test is a statistical method used to assess whether the means of 

two groups are significantly different from each other [2]. The result of a T-test is a set of P-

values that indicate the possibility that the differences could have happened by chance: a lower 

P-value means a more significant difference between two groups, so for our experiments smaller 

numbers are better. T-tests can be paired or unpaired – a paired T-test is used when the two 

groups are not independent, and an unpaired test is used when the two groups are independent. 

For our experiments, we calculated both paired and unpaired T-tests because it was not always 

clear whether the groups should be considered independent of one another. In addition, T-tests 

can be one-tailed, an option that is used when one group is expected to always be less than (or 

greater than) the other and we know that direction, or two-tailed, an option that is used only to 

show a difference that can sometimes be less and sometimes be greater. Since our strategy 

should always be better than the other strategies, we used a one-tail test. The results of the T-

tests show that most P-values, especially those for paired T-tests, are below 10%. These results 

indicate that the possibility of the improvement happening by chance is quite small.  

To summarize: Independent of the loads, CPU capabilities, application execution time, and 

number of resources, the Conservative Scheduling policy based on our tendency-based 

prediction strategy with mixed variation achieved better results than the other policies. It was 
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both the best policy in more situations under all load conditions on all clusters and the policy that 

resulted in the shortest execution time and the smallest variation in execution time. 

7.2 Parallel Data Transfer Experiments 

7.2.1 Experimental Methodology 

We compare five scheduling policies:  

(1) Best One Scheduling policy (BOS): Retrieve data from the network link with the highest 

predicted mean bandwidth. 

(2) Equal Allocation Scheduling policy (EAS): Retrieve the same amount of data from each 

source.  

(3) Mean Scheduling policy (MS): Allocate data according to the time balancing formula 

and use the interval bandwidth prediction for the effective bandwidth. This is equivalent 

to a tuning factor equal to 0.  

(4) Nontuned Stochastic Scheduling policy (NTSS): Allocate data according to the time-

balancing formula and use nontuned bandwidth variability to adjust the value of 

effective bandwidth. This is equivalent to a tuning factor equal to 1.  

(5) Tuned Conservative Scheduling policy (TCS): Allocate data according to the time 

balancing formula, and use the tuning factor as described in Section 6.2.2 to decide how 

conservative the scheduling policy should be. For links with higher variability, we 

estimate more conservative effective bandwidth and thus allocate less data. The value of 

the tuning factor adapts from 0 to 1 according to the variation in bandwidth, using the 

formula given in Section 6.2.2. 

We implemented multiple-link parallel data transfers using the partial data transfer function 

provided by GridFTP, part of the Globus Toolkit [19]. We measured the parallel data transfer 

time achieved for the five scheduling policies on different sets of machines; every set included 
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three source machines and one destination machine. Each machine had a replica of the file and 

provided part of the data, with the amount transferred from each source determined by the 

scheduling policy. Each pair of source and destination links opened one TCP socket. The 

networks may encounter contending load from other users during our experiments.  

We alternated scheduling policies for the same data transfers so that any two adjacent runs 

experienced similar load and variation in the environment. For each set of experiments we 

performed approximately 100 runs, but the experimental data was consistent with larger runs on 

similarly loaded platforms. For methods 1 and 3–5, the effective bandwidth and the data 

allocation strategy were recalculated before every run using the real-time information.  Complete 

experimental results and discussion can be found at [38],  summarized  in the following section.  

7.2.2 Experimental Results 

To compare the various policies, we again used three metrics: an absolute comparison of 

transfer times, a relative measure of achievements, and a statistical analysis of the significance of 

the improvement of our strategy. The first metric involves an average mean and an average 

standard deviation for all transfer times of each scheduling policy as a whole. This metric gives a 

rough evaluation of the performance of each scheduling policy over a given interval of time. The 

results show that over the entire run, the Tuned Conservative Scheduling policy exhibited 3%–

51% less overall transfer time than the Best One Scheduling and Equal Allocation Scheduling 

policies (presumably because it takes load balancing into account) and 2% to 7% less overall 

transfer time than Mean and Nontuned Stochastic Scheduling policy (presumably because it 

takes network performance variability into account). Moreover, considering load balancing and 

variation information in the scheduling policy results in more predictable behavior: the Tuned 

Conservative Scheduling policy exhibited a 1% to 84% smaller standard deviation in transfer 

time than the others.  
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The second metric we used was Compare. As we had for the data-parallel experiments, we 

evaluated five possibilities: best, good, average, poor, and worst. The results show that Tuned 

Conservative Scheduling using predicted mean and tuned variation is more likely to have a 

“best” or “good” transfer time than are the other approaches. This fact suggests that one can 

significantly improve the transfer time by appropriately taking account of the average and 

variation network information during the period of data transfer in the scheduling policy. 

The Equal Allocation Scheduling policy was always “worst” relative to the other approaches 

in the all but one experiments. The reason is that in these experiments, network capabilities are 

highly heterogeneous. Thus, the EAS strategy of allocating an equal amount of data to all 

sources results in “unbalanced” workload allocation and poor performance. In contrast, the Best 

One Scheduling policy performed worst in one experiment. The reason rests with the fact that the 

network capabilities are similar in this experiment, and thus load-balancing strategies that 

distribute load over multiple links tends to perform better than the Best One Scheduling strategy 

of selecting a single “best” link.    

The third metric used was the T-test. For our experiments, we calculated both paired and 

unpaired one-tailed T-tests comparing the Tuned Conservative Scheduling strategy with the 

other four strategies. The results indicate that the possibility of the improvement happening by 

chance is small. Thus, we conclude that our Tuned Conservative Scheduling policy achieves 

significant improvements relative to the other three strategies in most cases. 

To summarize our results: For all loads and capabilities considered, the Tuned Conservative 

Scheduling policy achieved better results than did the other policies considered. It was both the 

best policy in more situations under all load conditions and the policy that resulted in the shortest 

transfer time and the smallest variation in transfer time. 
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8 Conclusion  

We have presented a conservative scheduling policy that achieves efficient execution of data-

parallel applications and parallel data transfers in heterogeneous and dynamic environments. 

This policy uses information about the expected mean and variance of future resource 

capabilities to define data mappings appropriate for dynamic resources. Intuitively, the use of 

variance information is appealing because it provides a measure of resource “reliability.” Our 

results suggest that this intuition is valid.  

Our work comprises three distinct components. First, we evaluate two families of novel one-

step-ahead prediction strategies. Our results show that a dynamic tendency prediction model with 

different ascending and descending behavior performs best among all strategies studied. A 

comparative study conducted on a set of 38 machine load traces shows that this new predictor 

achieves much better results than do other techniques. However, we found experimentally that 

this predictor cannot outperform NWS predictors when predicting the network capability as it 

did on CPU load information prediction. One possible explanation is the different autocorrelation 

behaviors between two adjacent measurements for CPU load and network load time series. 

Previous studies [11,35] reveal that the CPU load is strongly correlated over time, and the 

autocorrelation between two adjacent measurement could be as high as 0.95. But for most of the 

network capability time series, the autocorrelation function value between two adjacent 

observations is rather small (only between 0.8 and 0.1). Our new homeostatic and tendency-

based prediction strategies, which give more weight to recent data, cannot track the trend in 

network capability time series well. However, NWS predictors, which take account of more 

statistic information, will give better prediction for these time series.  

We also show how to obtain predictions of expected mean and variance information by 

extending the one-step-ahead time series predictors. We use our best tendency-based predictor 
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for CPU load information prediction and NWS predictors for future network capability 

prediction. But any one-step-ahead predictor that can outperform our predictors is also applicable 

and has the potential to further improve the efficiency of our conservative scheduling strategy. 

Moreover, we show how information about expected future mean and variance (as obtained, 

for example, from our predictions) can be used to guide data mapping decisions. In brief, we 

assign less work to less reliable (higher variance) resources, thus protecting ourselves against the 

larger contending load spikes that we can expect on those systems. We use a conservative 

estimated CPU load prediction and effective bandwidth capability prediction for Cactus 

application and GridFTP implementation, respectively, to make data allocation decision by the 

time-balancing formula. Our estimation is only one possible approach. There are many ways to 

get the conservative resource capability estimation as long as (1) the estimated resource 

capability is inversely proportional to the variance of the resource capability (that is, for resource 

with higher variation in its performance, we have a smaller estimated effective resource 

capability, thus less work load); and (2) the result is reasonable (e.g., the estimated resource 

capability should not be an infinite large number).   

We apply our prediction techniques and scheduling policy to a substantial astrophysics 

application and a data transfer application. Our results demonstrate that our technique can obtain 

better execution times and more predictable application behavior than do previous methods that 

focus on predicted means alone or that use variances in a less effective manner. While the 

performance improvements obtained are modest, they are obtained consistently and with no 

modifications to the application beyond those required to support nonuniform data distributions. 
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